
PHYSICAL REVIEW E AUGUST 1999VOLUME 60, NUMBER 2
Reshaping of femtosecond pulses by the Gouy phase shift

Z. L. Horváth and Zs. Bor
Department of Optics and Quantum Electronics, JATE University, P.O. Box 406, H-6701 Szeged, Hungary

~Received 10 November 1998!

It is shown that because of the phase anomaly a femtosecond pulse propagates on the optical axis with a
velocity greater thanc in the vicinity of the focus not only for large but also small values of the Fresnel
number. The group velocity is calculated and its physical meaning discussed. Analytical expressions are
derived for the electric field. The causality of the system is proved. The mechanism of the superluminality is
a reshaping process caused by the interference. Contrary to other superluminal phenomena, the superluminal
propagation occurs in a classicallynot forbidden region.@S1063-651X~99!11108-5#

PACS number~s!: 42.25.Bs, 03.65.Bz, 42.25.Fx
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I. INTRODUCTION

It is well known that the phase fronts of a convergi
spherical wave diffracted at a circular aperture differs fro
the spherical wave fronts of geometrical optics. The ph
difference discovered by Gouy is called phase anomaly~or
Gouy shift! @1,2#. The phase anomaly occurs for both un
form converging wave and Gaussian beam, but in the cas
weak truncation of the incident Gaussian beam the ph
anomaly is much more well behaved than the one for a u
form converging spherical wave. Pulse propagation in d
persive medium and diffraction of pulses at a hole in
opaque screen are analogous phenomenon@3#. It is well-
known that the group velocity in dispersive medium can
ceedc @5–9#. The diffraction induces a frequency depende
phase distribution in a dispersionless media, even in vacu
Because of the presence of the frequency dependent p
anomaly and since the geometrical phase fronts move
speed ofc, it is a quite obvious assumption that the pha
and the group velocity differs fromc.

In Ref. @4# the group velocity was calculated in the neig
borhood of the focal point of an aberration-free lens illum
nated by a Gaussian beam with beam waistw carrying a
femtosecond pulse with central wavelengthl0. The analysis
was confined to weak truncation of the incident beam and
Fresnel number associated with the waist of the incid
beam was assumed to be large compared to unity~then the
focal shift is negligible@26,27#!. The group velocity on the
optical axis is given by@4#

vg~z!5
†11@pNwz/ f #2

‡

2c

†11@pNwz/ f #2
‡

22†12@pNwz/ f #2
‡

q2

2

5
†11@q2z0#2

‡

2c

†11@q2z0#2
‡

22†12@q2z0#2
‡

q2

2

, ~1!

wherez is the coordinate of pointP measured from the focu
~Fig. 1!, f is the focal length,Nw is the Fresnel number as
sociated with the waist atl0 given by Nw5w2/(l0f ), q
5w/ f is the divergence of the focused beam andz0
5pz/l0 is a dimensionless variable. The most exciting co
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sequence of Eq.~1! is that the propagation is superlumin
@4# within the Rayleigh range defined by (2zf 0 ,zf 0), where
zf 05l0 /(pq2) is the Rayleigh length of the focused bea
at l0. We use the wordsuperluminalin this paper in the
sense thatvg.c.

There are several mechanisms that leads to superlum
propagation. Surveys of the topic can be found in Refs.@7,8#.
The group velocity can behave abnormal in dispersive me
in regions of anomalous dispersion@5–9#. Superluminal
group velocity can also occur in media with population i
version @7#. In this case two types of inversion have be
investigated: the steady-state inversion and the sudden in
sion. In case of steady-state inversion the superluminalit
caused by the sign change of the real part of the linear
ceptibility @7,10–14#. In case of sudden inversion the co
pling between the electromagnetic field and atomic polari
tion waves leads to tachyonlike excitations wi
superluminal group velocities@7,15#. Superluminal propaga
tion has been associated with quantum tunneling and its e
tromagnetic analogues@7,8#. Superluminal group velocities
have been observed using microwaves@7,8,16–19# and light
pulses passing through a dielectric mirror@7,8,20,21#. Super-
luminal propagation has also been reported in periodic
quasiperiodic multilayer systems@7,22–24# and optical
phase conjugators@25#.

The superluminality occurred in the tunneling and the m
crowave experiments is often attributed to evanescent wa
Other types of tunnelinglike phenomena occur in optics,

FIG. 1. Notations relating to the calculations.
2337 © 1999 The American Physical Society
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2338 PRE 60Z. L. HORVÁTH AND ZS. BOR
example, propagation of light diffracted at a straight ed
into the shadow region, or propagation of light outside of
allowed orders of a grating or a Fabry-Perot interferome
@7#. These phenomena are all classically forbidden~forbid-
den in the sense of the classical mechanics and the geom
cal optics!. One of the interest of our article is that it de
scribes a phenomenon in which the superluminal propaga
occurs in a region allowed by the geometrical optics and
light propagates in a dispersionless medium~vacuum!.

In Ref. @4# little attention has been paid to the causal
and the pulse shape. It is an interesting question whethe
pulse propagates indeed with the group velocity and, me
while, pulse distortions occur. In the rest of this paper
electric field of the pulse is calculated on the optical axis a
a generalization of Eq.~1! is derived for arbitraryNw ~i.e.,
the focal shift is taken into account!. We will consider the
problem of causality and examine the velocity and the d
tortion of the pulse.

II. ELECTRIC FIELD ON THE OPTICAL AXIS

Consider a thin lens illuminated by a~spatially! Gaussian
beam carrying a femtosecond pulse having temporal dura
of t ~full width at half-maximum in intensity! and central
wavelengthl0. We assume that the waist of the beam
located in the input plane of the lens~planeA in Fig. 1.! and
the lens fills a circular aperture of radiusa in an opaque
screen. We suppose that the electric field in planeA is given
by

Ei~r,tA!5E0e2(r/w)2
h~ tA!5E0e2(r/w)2

s~ tA!eiv0tA, ~2!

where E0 is a constant,w is the beam waist,s(t) is the
envelope andv052pc/l0 is the central frequency of th
pulse,h(t)5s(t)eiv0t describes the temporal dependence
the electric field. Herer is the distance measured from th
optical axis andtA is the local time in planeA. We assume
that the pulse front reaches planeA at the moment oftA
50. In order to study the pure effect caused by the ph
anomaly, we suppose that the lens is free of aberration
any type.

We construct the focused field as the superposition mo
chromatic Fourier componentsU(P,v):

E~P,tA!5F tAv
21 $U~P,v!%5

1

2pE2`

`

U~P,v!eivtAdv,

~3!

where the symbolF21 denotes the inverse Fourier tran
form, the subscripts ofF indicates the conjugate variables
the transformation. The lens converts the plane phase fr
into spherical phase fronts of radiusf centered at the geo
metrical focal pointF, so the monochromatic components
a typical point Q of spherical surfaceS ~Fig. 1! may be
expressed as

US~Q!5E0e2(r/w)2
H~v!e2 ikD

5 f H~v!e2 ik(D1 f )E0e2(r/w)2 eik f

f
, ~4!
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whereH(v)5Ftv$h(t)% @i.e., the Fourier transform ofh(t)#,
k52p/l5v/c is the wave number. HerekD5knD is the
phase shift introduced by the lens, wheren is the refractive
index andD is the axial thickness of the lens. The spect
components behind the lens at a pointP not too close to the
plane of the aperture can be calculated from the diffract
integral@1#. If l!a and (a/ f )2!1 the spectral component
are given by@27#

U~P,v!5 f H~v!e2 ik(D1 f )F ikE0

2p

eik f

f E E
S
e2(r/w)2 eiks

s
dSG ,

~5!

wheres is the distanceQP and the integration extends ove
the spherical calotte generated by the aperture and the f
point F, having radiusf. The expression between the bracke
in Eq. ~5! has already been calculated in Ref.@27#. If 2 f /2
<z and f •K(Na)<z the monochromatic field at a pointP on
the optical axis is given by

U~z,v!5 f H~v!e2 ik(D1 f )F2 iE0S pNa2u

f D
3

e2k1 iu21

k2 iu
e2 ik f [u/(pNa2u)] G ~6a!

5 f H~v!e2 ik(D1 f )F2 iE0

v

c

a2

2 f ~ f 1z!

3
e2k1 iu21

k2 iu
e2 ikzG , ~6b!

where K(Na) is the root of the equation of 8(11x)3

5x2Na ~see Fig. 2 in Ref.@27#!, Na5a2/(l f ) is the Fresnel
number associated with the radius of the aperture,k
5(a/w)2 is the coefficient of truncation of the incident bea
andu5u(z,v) is a dimensionless variable defined by

u~z,v!5pNa

z

f 1z
5v

a2

2c f

z

f 1z
. ~7!

It is worth writing Eq.~7! asu(z,v)5vTa(z), where

Ta~z!5
a2

2c f

z

f 1z
. ~8!

Substituting Eq.~6! into Eq. ~3! one can obtain the electri
field on the optical axis in the vicinity of the focus by

E~z,tA!5
E0f

z
Ta~z!F tAv

21

3H ivH~v!
e2k1 ivTa(z)21

2k1 ivTa~z!
e2 iv(D1 f )/cJ . ~9!

Shifting the origin of the time, i.e., introducing a new tim
variablet defined by

t5tA2
D1 f

c
, ~10!

and using the properties of the Fourier transform, from E
~9! the electric field is given by
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E~z,t !5
E0f

z
Ta~z!F jv

21H ivH~v!
e2k1 ivTa(z)21

2k1 ivTa~z! J
j5t2z/c

~11a!

5
E0f

z
Ta~z!F jv

21$H~v!G~v!%j5t2z/c ~11b!

5
E0f

z
Ta~z!$h~j! ^ g~j!%j5t2z/c , ~11c!
where the symbol̂ denotes the operation of convolution
g(t)5F tv

21$G(v)% and

G~v!5 iv
e2k1 ivTa(z)21

2k1 ivTa~z!
. ~12!

After long, but straightforward calculation one can show th
e

g~ t !5H 12e2k

k
b8~ t !, if Ta50,

k

Ta
e(k/Ta)tb~ t !1

e2kd~ t1Ta!2d~ t !

Ta
, otherwise,

~13!

whered(t) is the Dirac delta function andb(t) is defined by

b~ t !55
d~ t !, if Ta50,

1/uTau, if Ta,0 and 0<t<2Ta ,

1/Ta , if Ta.0 and 2Ta<t<0,

0, otherwise

~14!

~see Fig. 3 in Ref.@28#!. Please note thatb(t) @and consequentlyg(t)# differs from zero on the interval@0,2Ta# in case of
Ta,0, or @2Ta,0# if Ta.0. Substituting Eq.~13! into Eq. ~11! one can obtain

E~z,t !55
E0a2

2c f

12e2k

k
h8~ t !, if z50,

E0f

z Fe2kh~j1Ta!2h~j!1
k

Ta
E

j

j1Ta
h~m!ek(j2m)/TadmG

j5t2z/c

, otherwise
~15!

by calculating the convolution withg(j).

A. Limiting cases

There are two important limiting cases depending on the value of truncation coefficientk. In case of weak truncation of th
input beam@i.e., k5(a/w)2@1# Eq. ~11! results in

Eg~z,t !5
E0f

z
Tw~z!F jv

21H ivH~v!

ivTw~z!21J
j5t2z/c

~16a!

5
E0f

z
Tw~z!F tv

21H vH~v!

11@vTw~z! #2
ei [arctan(vTw(z))2(v/c)z1p/2]J ~16b!

55
E0w2

2c f
h8~ t !, if z50,

E0f

z F 1

Tw
E

j

6`

h~m!e(j2m)/Twdm2h~j!G
j5t2z/c

, otherwise,
~16c!

where in the upper limit of the integral the minus sign should be used ifz,0 and the plus sign ifz.0. HereTw is a newly
introduced variable given by

Tw~z!5
w2

2c f

z

f 1z
. ~17!
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The other extreme case is the strong truncation of the incoming beam. Ifk!1 the electric field can be calculated from E
~11! @or Eq. ~15!# assumingk˜0 ~while a is fixed!:

Eh~z,t !5
2E0f

z
F tv

21H H~v!sin
vTa~z!

2
ei [vTa(z)/22(v/c)z1p/2]J ~18a!

5H E0a2

2c f
h8~ t !, if z50,

E0f

z
@h~ t2z/c1Ta!2h~ t2z/c!#, otherwise.

~18b!

This expression is identical with Eq.~18! in Ref. @28# whereNa@1 and a homogeneous illumination of the lens was assum
Equations~15! and ~8! can be regarded as the generalization of Eqs.~18! and ~10! in Ref. @28#, respectively. The first term
between bracket in Eq.~15! is the manifestation of the boundary waves generated by the aperture. It can be show
e2kh(t2z/c1Ta) describes a disturbance originated from the boundary of the aperture@29#. This disturbance was calle
boundary wave pulse in@28,30#.

B. Causality

The causality of a linear system can be ascertained from the impulse response function~or Green function! of the system
which is the response of the system to thed(t) input. The impulse response function can be calculated from Eq.~11! assuming
h(t)5d(t). It is given by

G~z,t !5
E0f

z
Ta~z!$d~j! ^ g~j!%j5t2z/c5

E0f

z
Ta~z!g~ t2z/c! ~19a!

5H E0a2

2c f

12e2k

k
d8~ t !, if z50,

E0f

z
@e2kd~j1Ta!2d~j!1ke(k/Ta)jb~j!#j5t2z/c , otherwise,

~19b!
d

ur
-
ls

ef.
e

-

where in the last step Eq.~13! was used. As it was mentione
before, functionb(t) is exactly zero outside the interval@0,
2Ta# in case of Ta,0 (z,0), or @2Ta,0# if Ta.0 (z
.0). So, on the optical axis at a pointP given byz, G(z,t)
differs zero on a time interval

T ~z!5H @z/c,z/c2Ta~z!#, if z,0,

@z/c2Ta~z!,z/c#, otherwise,
~20!

and exactly zero outside. It can be shown thatT (z) is exactly
the time interval in which the disturbance occurred on s
faceS passes through at pointP, which means that the cau
sality is not violated. According to our assumption the pu
front fills surfaceS ~see Fig. 1! at t52 f /c. A sudden dis-
turbance arisen at a typical pointQ of surfaceS propagating
with velocity c reaches pointP at

t52 f /c1s/c. ~21!

At the calculation of the spectral componentsU(z,v) @Eq.
~6!# the distances was approximated by
-

e

s5~ f 1z!F12
1

2 S r

f 1zD
2z

f
2•••G5 f 1z2cTr~z! ~22!

@see Eq.~2.9! and the paragraph below the equation in R
@27## whereTr(z) is a new variable with dimension of tim
given by

Tr~z!5
r2

2c f

z

f 1z
. ~23!

From Eq.~22! one can see the physical meaning ofTr(z): it
gives the time difference between the axial and theQP path.
Specially for the marginal path, that is when pointQ lies at
the edge of surfaceS the time difference isTa(z)
5a2/(2c f)•z/( f 1z). Substituting Eq.~22! into Eq.~21! one
can obtain that the disturbance reaches pointP at the mo-
ment

t5z/c2Tr~z!5z/c2~r/a!2Ta~z!. ~24!

From the relation of 0<r<a follows that the set of the
moments defined by Eq.~24! coincide with the time interval
T (z). Equation~24! has the following clear physical mean
ing. An observer at an axial pointPÞF ~i.e., zÞ0) could
see that in the time interval ofT (z) light comes from a sharp
bright ring on the screen of the aperture. Equation~24! gives
the radius of the ring:
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FIG. 2. The group velocity on the optical axis in case of weak truncation of the incoming beam for various values of the Fresnel
associated with beam waist at the lens. For small values ofNw the curves are asymmetric and the maximum is shifted towards the ape
a

th
av
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eld

re-
r~z,t !5aAz/c2t

Ta~z!
, ~25!

where tPT (z). From Eq.~25! one can see that ifz,0 the
radius of the ring increases in time from 0 toa, and if z
.0 the radius of the ring decreases in time froma to 0.
Which means that in front of the focus (z,0) the distur-
bance arrives first along the axial and finally along the m
ginal path, and behind the focus (z.0) it arrives in reverse
order. The superluminality treated below is caused by
interference of the secondary wavelets risen from the w
front which fills the aperture at the momentt52 f /c
~Huygens-Fresnel principle!. The light waves propagating in
different paths cause a reshaping process of the wave pa
likewise the probability waves described in Ref.@22#.

III. GROUP VELOCITY

First we will calculate the group velocity for the two lim
iting cases and then~in the following section! the physical
meaning of the group velocity and the pulse shape during
propagation will be discussed. The group velocity@31# on
the optical axis is defined by

vg~z!52F ]

]z

]F

]v U
v0

G21

, ~26!
r-

e
e

ket

e

whereF5F(z,v) is the phase of the field. Equation~26!
follows from the expression of

t1
]F

]v U
v0

50, ~27!

which gives implicitly the position of a hypothetical pointM
moving with speedvg(z) along the optical axis. PointM is
usually the point at which the absolute amplitude of the fi
attains its maxima at timet. The phase of the field for the
two limiting cases will be denoted byFg andFh for cases
weak and strong truncation of the incident pulsed beam,
spectively.

A. Weak truncation

In case of weak truncation from Eq.~16! the phase is
given by

Fg~z,v!5arctan„vTw~z!…2~v/c!z1p/2. ~28!

Substituting Eq.~28! into Eq.~26! the group velocity has the
form
vg~z!5
†11@v0Tw~z!#2

‡

2c

†11@v0Tw~z!#2
‡

22†12@v0Tw~z!#2
‡cTw8 ~z!

~29a!

5
†11@pNwz/~ f 1z!#2

‡

2c

†11@pNwz/~ f 1z!#2
‡

22†12@pNwz/~ f 1z!#2
‡

w2

2~ f 1z!2

, ~29b!
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2342 PRE 60Z. L. HORVÁTH AND ZS. BOR
which is the generalization of Eq.~1! for any values ofNw .
Figure 2 shows the group velocity at central wavelengthl0
5620 nm on the optical axis of a lens with focal lengthf
530 mm for various values ofNw . The results of Eq.~29!
and Eq.~1! were plotted with solid lines and circles, respe
tively. One can see that Eq.~1! is a good approximation o
Eq. ~29! for large values ofNw . For small values ofNw the
curves become asymmetric and the maximum is shifted
wards the lens likewise the focal shift. The group velocity
still greater thanc in the vicinity of the maximum. From Eq
~28! and Eq.~27! one can obtain that pointM moving on the
axis reaches pointP ~given byz) at time

tg~z!5
z

c
2

Tw~z!

11@v0Tw~z!#2
. ~30!

B. Strong truncation

Unlike the weak truncation of the incoming beam~when a
well behaved function gives the phase distribution! in case of
strong truncation the phase has discontinuity ofp at each
axial point of the zero intensity@see Eq.~18!#. From Eq.~18!
the phase of the focused beam is given by

Fh~z,v!5vTa~z!/22~v/c!z1p/21K, ~31!

where K50 if sin„vTa(z)/2….0, and K5p if
sin„vTa(z)/2…,0. Because of the discontinuities we have
exclude the axial points given by sin„v0Ta(z)/2…50 in use
of Eq. ~26!. Except these points one obtains the group vel
ity as

vg~z!5
c

12
a2

4~ f 1z!2

. ~32!

Because of the irregular behavior of the phase the phys
meaning of Eq.~32! is doubtful. We will see that Eq.~32!
gives the velocity of the centroid of the intensity.

IV. RESHAPING OF THE PULSE

In the foregoing the group velocity for the two limitin
cases has been calculated. It has been shown that the g
velocity exceedsc in the vicinity of the focal point. There-
fore it is interesting to verify whether the peak of the inte
sity propagates with the group velocity. It is also an intere
ing question if pulse distortions occur during th
propagation. Using Eq.~15! one can calculate the puls
shape during the propagation.

A. Weak truncation

In order to calculate the integral in Eq.~15! @or Eq. ~16!#
analytically, two special input pulse shapes were chosen.
would like to emphasize that the only reason of that cho
of the envelopes is to avoid the numerical integration of E
~15!. Other temporal pulse shapes~for example Gaussian!
have been treated numerically. The numerical calcula
-

o-

-

al

oup

-
t-

e
e
.

n

shows that the pulses with different temporal shapes exh
exactly the same behavior described below. In caseA the
envelope was supposed to be

s~ t !5H cos2
qt

2
, if utu,p/q,

0, otherwise,

~33!

where q is a scale factor given byq52arccos(A221)/t.
This type of pulse shape@Eq. ~33!# was compared with a
Gaussian pulse with the same durationt in Fig. 3. The func-
tion described by Eq.~33! is continuous and differentiable
In caseB an exponentially rising and falling envelope wa
considered:

s~ t !5e2 ln 2utu/t. ~34!

In this case the envelope is continuous but not differentia
at t50. For the two envelopes the intensity was calcula
using Eq.~15! with the following parameters:l05620 nm,
t510 fs, f 530 mm, a59 mm, w53 mm. The temporal
profile of the input pulse was depicted for the two casesA
andB) in the top corners of Fig. 4. Between them the tim
delay defined by

Dt~z!5tg~z!2
z

c
52

Tw~z!

11@v0Tw~z!#2
~35!

was plotted.Dt(z) can be regarded as a physical quant
which measures the amount of the anomaly of the arriva
a pointz. Below the time dependence of the intensity at fi
points @denoted by~a!–~e!# of the optical axis was depicte
with solid line. The circles show the intensity belonging
the input pulse~it was shifted and scaled to the maximum!.
The insets show the 1 fs wide interval of the maximum.
caseA the peak of the intensity propagates with speed ofvg
and there is no temporal distortion. For Gaussian pulse sh
the same behavior was obtained by evaluating Eq.~15! nu-
merically. While in caseB the maximum~which is a break
point! propagates with speed ofc and pulse distortion occurs
In case of weak truncation it can be shown@using Eq.~16!

FIG. 3. Comparison between the input temporal pulse sh
used in the analytical calculations and a Gaussian pulse with
same durationt.
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FIG. 4. Time dependence of the intensity~solid line! at five points@denoted by~a!–~e!# of the optical axis for two temporal pulse shap
(A andB shown in the top corners! assuming weak truncation of the incoming beam. The circles show the input temporal shape~shifted and
scaled to the maximum!. The insets show the 1 fs wide interval of the maximum. The delayDt(z)5tg(z)2z/c is a physical quantity which
measures the amount of the anomaly of the arrival at a pointz.
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FIG. 5. In case of strong truncation of the incoming beam the main~black circles! and the boundary wave~hollow circles! pulse interfere.
The intensity resulting from the interference is plotted with solid line@~a! destructive;~d! constructive interference;~b!,~c! intermediate
cases#. The dashed line indicates the intensity relating to the unity truncation coefficient.
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and the properties of the integral function# that the break
points and the discontinuities of the field move with spe
of c.

B. Strong truncation

In case of strong truncation two pulses propagate on
optical axis@see Eq.~18!#. One of the pulses propagates wi
speed ofc. It was called main pulse in Refs.@28,30#. The
main pulse reaches pointz at time tm5z/c. The other pulse
named boundary wave pulse arrives at the momenttb5z/c
2Ta(z). The time difference between the two pulses
Ta(z) @Eq. ~8!#. The intensity on the optical axis is given b
I (z,t)5uE(z,t)u2. Using Eq. ~18! and h(t)5s(t)eiv0t one
can obtain

I ~z,t !5~E0f /z!2@s2~ t2tm!1s2~ t2tb!

22s~ t2tm!s~ t2tb!cos~v0Ta!#. ~36!

This expression shows that the main and the boundary w
pulse interfere. The interference term is the last term betw
the ~square! brackets in Eq.~36!. Destructive interference
occurs at pointsz given by v0Ta(z)52mp, where m5
61,62, . . . . The interference is constructive at poin
where the conditionv0Ta(z)5(2m11)p is satisfied with
m50,61,62, . . . . The intensity varies between
(E0f /z)2@s(t2tm)2s(t2tb)#2 and (E0f /z)2@s(t2tm)1s(t
2tb)#2. Figures 5~a! and 5~d! show destructive and construc
tive interference, respectively.~The parameters of the calcu
lations arel05620 nm, t510 fs, f 530 mm, a53 mm.)
d

e

ve
en

Two intermediate cases are plotted in Figs. 5~b! and 5~c!.
The intensity of the main and the boundary wave pulse
depicted by small circles. The dashed line indicates the
tensity belonging to unity truncation parameterk (w5a). In
this case the amplitude of the boundary wave pulse
smaller, which reduces its influence. Ifs(t) is an even func-
tion, the pulse centroid defined by

tc~z!5E
2`

`

tuE~z,t !u2dt/E
2`

`

uE~z,t !u2dt ~37!

may be expressed in the form

tc~z!5
tm1tb

2
5

z

c
2

Ta~z!

2
. ~38!

From Eq.~38! the velocity of the pulse centroid is given b

vc~z!5Fdtc
dzG21

5
c

12
a2

4~ f 1z!2

, ~39!

which is identical with Eq.~32!. That is, if s(t) is even, the
pulse centroid moves on the optical axis with speed ofvg .

Approaching the focus the time difference between
main and the boundary wave pulse decreases. The two pu
construct only one pulse propagating with speed ofvc . In
Fig. 6~a! the solid line shows the time dependent intensity
z5215 mm. The circles indicate the input intensity profi
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scaled and shifted to the maximum. The inset shows
wide time interval of the maximum. Using the expansion
cos(x)512x2/21••• one can obtain an approximation
Eq. ~36! for small values ofz:

I ~z,t !'F E0a2

2c~ f 1z!G
2

†@s8~ t2tc!#
21@v0s~ t2tc!#

2
‡

'F E0a2v0

2c~ f 1z!
s~ t2tc!G2

, ~40!

FIG. 6. Approaching the focus, the interference between
main and the boundary wave pulse yields only one pulse~solid
line!. The circles indicate the input intensity profile scaled a
shifted to the maximum. The inset shows 1 fs wide time interva
the maximum. The intensity reaches its maximum attc ~a! in case
of k50 ~strong truncation!, while betweenz/c and tc in case of
k51 ~b!.
.

.

fs
f

where the last approximation is valid for (v0t)2@1. Equa-
tion ~40! describes a pulse propagating with speed ofvc .

In Fig. 6~b! the solid line shows the intensity atz5
215 mm depending on the time for unity truncation param
eterk. The circles indicate the input intensity profile scal
and shifted to the maximum. The inset shows 1 fs wide ti
interval of the maximum. The intensity reaches its maximu
betweenz/c andtc which means that the speed of the ma
mum differs fromc.

V. CONCLUSIONS

It has been pointed out that the phase anomaly lead
superluminal propagation of femtosecond pulses. The gr
velocity for the two important limiting cases has been calc
lated and its physical meaning discussed. Analytical exp
sions have been derived for the electric field on the opt
axis. The causality of the system has been proved. The
perluminality is the result of the pulse reshaping caused
the Gouy phase shift.

Although we have considered an aberration-free lens h
the effect occurs in case of other~aberration-free! focusing
systems. The Gouy shift is caused by the truncation of
converging spherical wave fronts by the aperture. We h
used scalar approximation, but it is known ifl!a and a2

! f 2, the scalar treatment is adequate and is in agreem
with the experimental results.

ACKNOWLEDGMENTS

This work has been supported by OTKA Grant No
F020889 and T016631, World Bank–OTKA Grant N
W015239, and FKFP Grant No. 0208/97.

e

f

:

tt.

ys.

v.

.

@1# M. Born and E. Wolf,Principles of Optics, 6th ~corrected! ed.
~Pergamon Press, Oxford, 1987!, Chap. 8.8.

@2# A. E. Siegman,Lasers~University Science Books, Mill Val-
ley, CA, 1986!, p. 645.

@3# J. Jones, Am. J. Phys.42, 43 ~1974!.
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