PHYSICAL REVIEW E VOLUME 60, NUMBER 2 AUGUST 1999

Reshaping of femtosecond pulses by the Gouy phase shift
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It is shown that because of the phase anomaly a femtosecond pulse propagates on the optical axis with a
velocity greater thart in the vicinity of the focus not only for large but also small values of the Fresnel
number. The group velocity is calculated and its physical meaning discussed. Analytical expressions are
derived for the electric field. The causality of the system is proved. The mechanism of the superluminality is
a reshaping process caused by the interference. Contrary to other superluminal phenomena, the superluminal
propagation occurs in a classicalipt forbidden region[S1063-651X%99)11108-5

PACS numbegs): 42.25.Bs, 03.65.Bz, 42.25.Fx

[. INTRODUCTION sequence of Eq(l) is that the propagation is superluminal
[4] within the Rayleigh range defined by-;q,z:), where
It is well known that the phase fronts of a converging z;o=\o/(79?) is the Rayleigh length of the focused beam
spherical wave diffracted at a circular aperture differs fromat Ay. We use the wordsuperluminalin this paper in the
the spherical wave fronts of geometrical optics. The phaseense thav,>c.
difference discovered by Gouy is called phase anonaty There are several mechanisms that leads to superluminal
Gouy shify [1,2]. The phase anomaly occurs for both uni- propagation. Surveys of the topic can be found in RéfS].
form converging wave and Gaussian beam, but in the case dhe group velocity can behave abnormal in dispersive media
weak truncation of the incident Gaussian beam the phas@ regions of anomalous dispersid®—9]. Superluminal
anomaly is much more well behaved than the one for a unigroup velocity can also occur in media with population in-
form converging spherical wave. Pulse propagation in disversion[7]. In this case two types of inversion have been
persive medium and diffraction of pulses at a hole in aninvestigated: the steady-state inversion and the sudden inver-
opaque screen are analogous phenomdi@nlt is well-  sion. In case of steady-state inversion the superluminality is
known that the group velocity in dispersive medium can ex-caused by the sign change of the real part of the linear sus-
ceedc [5-9]. The diffraction induces a frequency dependentceptibility [7,10—14. In case of sudden inversion the cou-
phase distribution in a dispersionless media, even in vacuunpling between the electromagnetic field and atomic polariza-
Because of the presence of the frequency dependent phasen waves leads to tachyonlike excitations with
anomaly and since the geometrical phase fronts move witsuperluminal group velocitids,15]. Superluminal propaga-
speed ofc, it is a quite obvious assumption that the phasetion has been associated with quantum tunneling and its elec-
and the group velocity differs fror. tromagnetic analoguds,8]. Superluminal group velocities
In Ref.[4] the group velocity was calculated in the neigh- have been observed using microwayé$8,16—19 and light
borhood of the focal point of an aberration-free lens illumi- pulses passing through a dielectric mirf@r8,20,21. Super-
nated by a Gaussian beam with beam waistarrying a luminal propagation has also been reported in periodic or
femtosecond pulse with central wavelength The analysis quasiperiodic multilayer system§7,22—-24 and optical
was confined to weak truncation of the incident beam and thphase conjugatoi®5].
Fresnel number associated with the waist of the incident The superluminality occurred in the tunneling and the mi-
beam was assumed to be large compared to Wtlign the crowave experiments is often attributed to evanescent waves.
focal shift is negligible[26,27]). The group velocity on the Other types of tunnelinglike phenomena occur in optics, for
optical axis is given by4]
pulse front geometrical
[1+[ 7N, 2/ ]2 focal plane
Vg(z) = 192
[1+[7TNWz/f]2]2—[1—[quWz/f]Z]7

B [1+[9°¢0]%c o
— 52
[1+[9%Lo]*PP—[1— [ﬁ2§0]2]7

wherezis the coordinate of poirf® measured from the focus
(Fig. 1), f is the focal lengthN,, is the Fresnel number as-
sociated with the waist ao given by N,=w?/(\,f), o
=w/f is the divergence of the focused beam afgl
=7zl \q is a dimensionless variable. The most exciting con- FIG. 1. Notations relating to the calculations.

[N I ' A

incident pulse
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example, propagation of light diffracted at a straight edgewhereH(w) = F;,{h(t)} [i.e., the Fourier transform df(t) ],
into the shadow region, or propagation of light outside of thek=2mx/\ = w/c is the wave number. HereA=knD is the
allowed orders of a grating or a Fabry-Perot interferometephase shift introduced by the lens, wherés the refractive
[7]. These phenomena are all classically forbiddfembid-  index andD is the axial thickness of the lens. The spectral
den in the sense of the classical mechanics and the geomettemponents behind the lens at a pdhiot too close to the
cal optic3. One of the interest of our article is that it de- plane of the aperture can be calculated from the diffraction
scribes a phenomenon in which the superluminal propagatioimtegral[1]. If A<a and (@/f)2<1 the spectral components
occurs in a region allowed by the geometrical optics and thare given by[27]
light propagates in a dispersionless medi(uacuun). ] o s

In Ref. [4] little attention has been paid to the caus;alityu(P )= FH(w)e KA+D lkﬂe_f fe‘(f”w)ze—ds}
and the pulse shape. It is an interesting question whether the* " ’ 27 f s S '
pulse propagates indeed with the group velocity and, mean- (5)
while, pulse distortions occur. In the rest of this paper the
electric field of the pulse is calculated on the optical axis andvheres is the distanc&®P and the integration extends over
a generalization of Eq(1) is derived for arbitraryN,, (i.e.,  the spherical calotte generated by the aperture and the focal
the focal shift is taken into accoyniwWe will consider the  PointF, having radiug. The expression between the brackets
problem of causality and examine the velocity and the disin Eq. (5) has already been calculated in Rd7]. If —f/2

tortion of the pulse. <z andf-K(N,) <z the monochromatic field at a poiRton
the optical axis is given by

Il. ELECTRIC FIELD ON THE OPTICAL AXIS )
U(z,w)=fH(w)e K&+

e (WNa—U)
=i

Consider a thin lens illuminated by(apatially) Gaussian 0

beam carrying a femtosecond pulse having temporal duration

—Kk+Iu
of 7 (full width at half-maximum in intensityand central x:e—ikf[u/(wNa—U)l} (63)
wavelength\,. We assume that the waist of the beam is K—1U
located in the input plane of the lefiglaneA in Fig. 1) and )
the lens fills a circular aperture of radiasin an opaque —fH(w)e KA+ —iEog a
screen. We suppose that the electric field in plarig given c 2f(f+2)
by e K+iu_ 1 )
X— _Ikz}, (6b)
Ei(p,ta) =Eoe” ?"’h(ta) =Eoe” " s(ta)el ot (2) e
where K(N,) is the root of the equation of 8fix)3
where E, is a constantw is the beam waists(t) is the  =x2N, (see Fig. 2 in Ref[27]), N,=a%(\f) is the Fresnel

envelope andvo=2mc/\g is the central frequency of the number associated with the radius of the apertuke,

pulse,h(t) =s(t)e'“o" describes the temporal dependence of= (a/w)? is the coefficient of truncation of the incident beam
the electric field. Here is the distance measured from the andu=u(z,w) is a dimensionless variable defined by

optical axis and, is the local time in plané. We assume

that the pulse front reaches pladeat the moment oft z a?

z

=0. In order to study the pure effect caused by the phase Uzw)=aNa s =055 77 @)
anomaly, we suppose that the lens is free of aberrations of
any type. It is worth writing Eqg.(7) asu(z,0) = wT4(z), where
We construct the focused field as the superposition mono- 2
chromatic Fourier component$(P,w): - =
Ta(2) 2cf f+z ®
E(p,tA):f;l{U(p'w)}:ifw U(P,w)e'“dw, Substituting Eq/(6) into Eq. (3) one can obtain the electric
AP 27 ) = field on the optical axis in the vicinity of the focus by
()
E(zty) = 2T (2)F L
where the symbolF ! denotes the inverse Fourier trans- (Zta)= z a(2) tae
form, the subscripts aof indicates the conjugate variables of CktioT,(2)
the transformation. The lens converts the plane phase fronts ; C T —ie(A+f)c
: ) - X{iowH(w) - e . (9
into spherical phase fronts of radifisentered at the geo- —k+tioTy(2)

metrical focal point=, so the monochromatic components at
a typical pointQ of spherical surfaces (Fig. 1) may be
expressed as

Shifting the origin of the time, i.e., introducing a new time
variablet defined by

5 , A+f
Us(Q)=Ege " H(w)e 4 t=ta=—— (10
_ elkf ) _ _
—fH —ik(A+HE o= (pW)2Z__ 4 and using thg p.rope:me.s of the Fourier transform, from Eq.
(w)e o® f @ (9) the electric field is given by
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Eof . e «tioTa(2) _q where the symbol denotes the operation of convolution,
Bab= 7 T@Fa|lol) 5o my | L 90=FLl{G()} and
119
Eof e KtieT @
=~ T F o {H(@)G(@)} =t (11b) Glw)=ie — 772 (12
of
:TTa(Z){h(f)@’g(f)}é:t—z/c* (110 After long, but straightforward calculation one can show that
_K b'(t), if T,=0,
t)= _ 13
SO7Y ke L e T~ 8(0) _ .
—elalp(t) + , otherwise,
Ta Ta
where §(t) is the Dirac delta function anb(t) is defined by
st), if T,=0,
UT,, if Ty,<0 and Ost=-T,,
b(t) _ | a| a a (14)

1T, if T,>0 and —-T,<t=<O0,
0, otherwise

(see Fig. 3 in Ref[28]). Please note thdi(t) [and consequently(t)] differs from zero on the intervdl0,— T,] in case of
T,<O0, or[ —T,,0] if T,>0. Substituting Eq(13) into Eq.(11) one can obtain

Eqa2 1—e"‘h, ¢ 20
2cf (v, it z=0,
E(z0=1 g,f K [E4Ta (15
— e*"h(§+Ta)—h(§)+T—f h(w)e € M/Tady, ., otherwise
aJ¢

&=t—1zl/c

by calculating the convolution witly(¢).

A. Limiting cases

There are two important limiting cases depending on the value of truncation coefficientase of weak truncation of the
input beami.e., k= (a/w)?>1] Eq. (11) results in

Eq(z t):E_OfT (Z)]:l(M] (163
o= z v folinTy(z)—1 R
Eof H :
:_OTW(Z)]_-I—wl wH(w) 2el[arctan(cuT\,‘,(z))—(w/c)z+7r/2] (16b)
z 1+[wTW(2) ]
Eow? _
Z—th/(t), if z=0,
TV Eof[ 1 (= (160

. , otherwise,

&=t—z/c

T L_ h(p)et ) Tdu—h(¢)

where in the upper limit of the integral the minus sign should be usee 6 and the plus sign i£>0. HereT,, is a newly
introduced variable given by

Tu(2)= o 2 17
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The other extreme case is the strong truncation of the incoming bea€ Ifthe electric field can be calculated from Eq.
(1) [or Eq.(15] assuming«— 0 (while a is fixed):

Eh(z!t)ZZEZOfft_wl H(w)sin wTa(2) ll0Ta(@)/2- (wlc)z+ 2] (183
Eoa2 _
ct h'(t), if z=0,
- (18b)

Eof
TO[h(t— Zlc+T,) —h(t—z/c)], otherwise.

This expression is identical with E¢L8) in Ref.[28] whereN,>1 and a homogeneous illumination of the lens was assumed.
Equations(15) and(8) can be regarded as the generalization of Efj8). and (10) in Ref.[28], respectively. The first term
between bracket in Eql5) is the manifestation of the boundary waves generated by the aperture. It can be shown that
e “h(t—z/c+T,) describes a disturbance originated from the boundary of the ap¢BfeThis disturbance was called
boundary wave pulse i28,30.

B. Causality

The causality of a linear system can be ascertained from the impulse response flmc@yaen functiopof the system
which is the response of the system to #{€) input. The impulse response function can be calculated fronflHyjassuming
h(t)=4(t). It is given by

Eof Eof
G(zt)= = Ta(D{HO @Y} emt-ze=—, Ta(2)g(t—2/C) (199
an2 1—87'{ , . _
5ct o' (t), if z=0,

=1 &+ (19b)
—[e 8(£+To)— 8(§) + kel TD(§)]e e, otherwise,

2

f

where in the last step E¢L3) was used. As it was mentioned

before, functiorb(t) is exactly zero outside the intervgd, s=(f+2)
—T,] in case of T,<O0 (z<0), or [—T,0] if T,>0 (z

>0). So, on the optical axis at a poiRtgiven byz, G(z,t) [see Eq.(2.9) and the paragraph below the equation in Ref.

P
f+z

1
1- > =f+z-cT,(2) (22

differs zero on a time interval [27]] whereT ,(2) is a new variable with dimension of time
given by
[z/c,zlc—T4(z)], if z<O p° z
zlc,zlc—Ty(2)], if z<O, -
- : 20) T2 =55t trz 23

Y7 [Ze—Tu(2),2/c],  otherwise,

From Eq.(22) one can see the physical meaninglg{z): it
gives the time difference between the axial and@ path.
and exactly zero outside. It can be shown thea) is exactly  Specially for the marginal path, that is when poities at
the time interval in which the disturbance occurred on Surthe edge of surfaceS the time difference iSTa(Z)
face S passes through at poift, which means that the cau- =ga?/(2cf)-z/(f +z). Substituting Eq(22) into Eq.(21) one
sality is not violated. According to our assumption the pulsecan obtain that the disturbance reaches p®irdt the mo-
front fills surfaceS (see Fig. 1 att=—f/c. A sudden dis- ment
turbance arisen at a typical poi@tof surfaceS propagating
with velocity ¢ reaches poinP at t=2z/c—T,(z)=2/c—(p/a)’Ty(2). (24)

From the relation of &p=<a follows that the set of the
moments defined by E¢24) coincide with the time interval
7(z). Equation(24) has the following clear physical mean-
ing. An observer at an axial poiR#F (i.e., z#0) could
see that in the time interval af(z) light comes from a sharp
At the calculation of the spectral componeht$z,w) [Eq.  bright ring on the screen of the aperture. Equat@®$) gives
(6)] the distances was approximated by the radius of the ring:

t=—f/c+slc. (22
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FIG. 2. The group velocity on the optical axis in case of weak truncation of the incoming beam for various values of the Fresnel number
associated with beam waist at the lens. For small valuég,ahe curves are asymmetric and the maximum is shifted towards the aperture.

[zlc—t where ® =d(z,w) is the phase of the field. Equatid@6)
p(zt)=a\/=———, (25  follows from the expression of
Ta(2)
wherete 7(z). From Eq.(25) one can see that #<0 the
radius of the ring increases in time from 0 & and if z t+ @ -0 (27)
>0 the radius of the ring decreases in time franto 0. do|

Which means that in front of the focug<0) the distur- °

bance arrives first along the axial and finally along the mar-

ginal path, and behind the focusX0) it arrives in reverse \yhich gives implicitly the position of a hypothetical poikt
prder. The superluminality treated belovy is caused by th‘?noving with speeds,(z) along the optical axis. Poir is
interference of the secondary wavelets risen from the wavggyally the point at which the absolute amplitude of the field
front which fills the aperture at the moment=—f/c  attains its maxima at time The phase of the field for the
(Huygens-Fresnel principleThe light waves propagating in g |imiting cases will be denoted b, and @, for cases

different paths cause a reshaping process of the wave packgbak and strong truncation of the incident pulsed beam, re-
likewise the probability waves described in REE2]. spectively.

Ill. GROUP VELOCITY

. . . . A. Weak truncation
First we will calculate the group velocity for the two lim-

iting cases and thefin the following sectioh the physical ~In case of weak truncation from Eq16) the phase is
meaning of the group velocity and the pulse shape during theiven by

ropagation will be discussed. The group velo on
Fhepopq[ical axis is defined by group 48] dy(z,0)=arctawT,(2))— (w/c)z+ 7/2. (28

g ob| ]t
Vo(D)=—| > —— : (26)  Substituting Eq(28) into Eq.(26) the group velocity has the
wg form
[1+[woTw(2)]?TPc
= 29
Vol [1+[woTw(2) PP~ [1-[woTw(2) P lcTy(2) (299
272
_ [1+[7Ny2z/(f+2)]°]°c (299

w2
(L [Nyl (F 4+ 2) P~ [ [Nyl (201 =



2342 Z. L. HORVATH AND ZS. BOR PRE 60

which is the generalization of E@l) for any values olN,, . ) o2 4! it <™
Figure 2 shows the group velocity at central wavelengih _ 2’ q
=620 nm on the optical axis of a lens with focal lendth 1 sO= 0 ,otherwise
=30 mm for various values df,,. The results of Eq(29)

and Eq.(1) were plotted with solid lines and circles, respec-
tively. One can see that E¢l) is a good approximation of
Eq. (29 for large values oN,,. For small values oN,, the
curves become asymmetric and the maximum is shifted to-
wards the lens likewise the focal shift. The group velocity is

still greater thart in the vicinity of the maximum. From Eq.
(28) and Eq.(27) one can obtain that poié moving on the
axis reaches poirf (given byz) at time

LI 7 CY

C 1+[weTy(2)]? 30

B. Strong truncation

Unlike the weak truncation of the incoming bedwhen a
well behaved function gives the phase distributioncase of
strong truncation the phase has discontinuityzofit each
axial point of the zero intensitysee Eq(18)]. From Eq.(18)
the phase of the focused beam is given by

Pp(z,0)=wTa(2)/2— (wlc)z+7/2+K, (31

where K=0 if sin(wT,(2)/2)>0, and K== if

sees (Gaussian

FIG. 3. Comparison between the input temporal pulse shape
used in the analytical calculations and a Gaussian pulse with the
same duratiorr.

shows that the pulses with different temporal shapes exhibit
exactly the same behavior described below. In caste
envelope was supposed to be

t
co§q—, if |t|<w/q,
s(t)= 2 (33

0, otherwise,

sin(wT,(2)/2)<0. Because of the discontinuities we have toWhere is a scale factor given by=2arccos(2—1)/r.

exclude the axial points given by $ingT,(z)/2)=0 in use

This type of pulse shapEEqg. (33)] was compared with a

of Eq. (26). Except these points one obtains the group velocGaussian pulse with the same duratiom Fig. 3. The func-

ity as

(32

1—-—F
4(f+2)?

tion described by Eq(33) is continuous and differentiable.
In caseB an exponentially rising and falling envelope was
considered:

s(t)=e M2, (34)
In this case the envelope is continuous but not differentiable
att=0. For the two envelopes the intensity was calculated

Because of the irregular behavior of the phase the physicglsing Eq.(15) with the following parametersk o =620 nm,

meaning of Eq(32) is doubtful. We will see that Eq.32)
gives the velocity of the centroid of the intensity.

IV. RESHAPING OF THE PULSE

In the foregoing the group velocity for the two limiting
cases has been calculated. It has been shown that the group

velocity exceedg in the vicinity of the focal point. There-

fore it is interesting to verify whether the peak of the inten-

=10 fs, f=30 mm, a=9 mm, w=3 mm. The temporal
profile of the input pulse was depicted for the two casiks (
andB) in the top corners of Fig. 4. Between them the time
delay defined by

At(2)=t4(2) - Z_ Tu(2)

¢ it legre@

sity propagates with the group velocity. It is also an interestwas plotted.At(z) can be regarded as a physical quantity

ing question if pulse distortions occur during

the which measures the amount of the anomaly of the arrival at

propagation. Using Eq(15 one can calculate the pulse @ pointz. Below the time dependence of the intensity at five

shape during the propagation.

A. Weak truncation

In order to calculate the integral in EQL5) [or Eq.(16)]

points[denoted by(a)—(e)] of the optical axis was depicted
with solid line. The circles show the intensity belonging to
the input pulsd(it was shifted and scaled to the maximum
The insets show the 1 fs wide interval of the maximum. In
caseA the peak of the intensity propagates with speed of

analytically, two special input pulse shapes were chosen. Wand there is no temporal distortion. For Gaussian pulse shape
would like to emphasize that the only reason of that choiceghe same behavior was obtained by evaluating (E6) nu-
of the envelopes is to avoid the numerical integration of Eqmerically. While in caseB the maximum(which is a break

(15). Other temporal pulse shapé&®r example Gaussian

point) propagates with speed ofand pulse distortion occurs.

have been treated numerically. The numerical calculatioin case of weak truncation it can be shojwrsing Eq.(16)
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inpiut pulsgl 0.2 input pulse I

max

170 -160  -150

Ar=0.112f
> fs)

170 -160
¢ [fs]

z==20pm 1,..=1105

max

;
:
7
,
:
:
)
Z
C
—

-50 At=0.165 fs

1...=12.50

max

=17.82

max

At=—0133 fs

At=—0.086 fs

FIG. 4. Time dependence of the intensigplid line) at five pointgdenoted bya)—(e)] of the optical axis for two temporal pulse shapes
(A andB shown in the top cornerassuming weak truncation of the incoming beam. The circles show the input temporal(stiétpd and
scaled to the maximumThe insets show the 1 fs wide interval of the maximum. The dalgy) =ty(z) —z/c is a physical quantity which
measures the amount of the anomaly of the arrival at a oint
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z=-726 um
.

t=10fs
A, =620 nm
a=3mm

f=30mm

Ez

T M T —2 T == L) T T
-2430 -2420 -2410 -2400 -2370

a t [fs]

[ main pulse

z=-686 pm I boundary wave pulse
- K =0 (strong truncation)
A K=1
l: rﬂ S \\\ [
U T T T N ——— N
-2300 -2290 -2280 -2235 -2225 -2215 -2205
. t[fs] t [£5] d

FIG. 5. In case of strong truncation of the incoming beam the rfidirck circle$ and the boundary wav@ollow circleg pulse interfere.
The intensity resulting from the interference is plotted with solid [it® destructive;(d) constructive interferenceb),(c) intermediate
case$ The dashed line indicates the intensity relating to the unity truncation coefficient.

and the properties of the integral functjothat the break Two intermediate cases are plotted in Fig&)5and Jc).
points and the discontinuities of the field move with speedThe intensity of the main and the boundary wave pulse is
of c. depicted by small circles. The dashed line indicates the in-
tensity belonging to unity truncation paramekefw=a). In
B. Strong truncation this case the amplitude of the boundary wave pulse is

) smaller, which reduces its influence.sfft) is an even func-
In case of strong truncation two pulses propagate on thg,., the pulse centroid defined by

optical axis[see Eq(18)]. One of the pulses propagates with

speed ofc. It was called main pulse in Ref§28,30. The

main pulse reaches poiatat timet.,=z/c. The other pulse tc(Z):f
named boundary wave pulse arrives at the mongntz/c
—TJ(2). The time difference between the two pulses is
Ta(2) [Eq. (8)]. The intensity on the optical axis is given by
I(z,t)=|E(z,t)|. Using Eq.(18) and h(t)=s(t)e'*°' one
can obtain te(2)=

) t|E(z,t)|2dt/fi |E(z,1)|%dt (37

may be expressed in the form

thtty  Z Ta(2)

c 2

(38
|(z,t)=(Eof/z)?[s%(t—ty) +S2(t—tp)

From Eq.(38) the velocity of the pulse centroid is given by
—2s(t—ty)s(t—tp)cog wT,)]. (36)

dt.]? c
This expression shows that the main and the boundary wave ve(2)= dj =— (39
pulse interfere. The interference term is the last term between . a
the (square brackets in Eq.36). Destructive interference 4(f+2z)?
occurs at pointsz given by woT,(z)=2mm, where m=
+1,£2,.... Theinterference is constructive at points which is identical with Eq(32). That is, ifs(t) is even, the
where the conditionw,T,(2) =(2m+1) is satisfied with  pulse centroid moves on the optical axis with speed gf
m=0,+1,=2,.... The intensity varies between Approaching the focus the time difference between the

(Eof/2)[s(t—t) —s(t—tp)]? and E,yf/2)’[s(t—t,)+s(t  main and the boundary wave pulse decreases. The two pulses
—tp)]%. Figures %a) and 5d) show destructive and construc- construct only one pulse propagating with speedsof In

tive interference, respectivelyThe parameters of the calcu- Fig. 6a) the solid line shows the time dependent intensity at
lations areNy=620 nm,7=10 fs, f=30 mm,a=3 mm.) z=-—15 um. The circles indicate the input intensity profile
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=214

where the last approximation is valid fom§7r)?>1. Equa-
tion (40) describes a pulse propagating with speed of

In Fig. 6b) the solid line shows the intensity at=
—15 um depending on the time for unity truncation param-
eter x. The circles indicate the input intensity profile scaled
and shifted to the maximum. The inset shows 1 fs wide time
interval of the maximum. The intensity reaches its maximum
betweernz/c andt. which means that the speed of the maxi-
] mum differs fromc.

I

max

V. CONCLUSIONS

It has been pointed out that the phase anomaly leads to
superluminal propagation of femtosecond pulses. The group
velocity for the two important limiting cases has been calcu-
lated and its physical meaning discussed. Analytical expres-
sions have been derived for the electric field on the optical

FIG. 6. Approaching the focus, the interference between thedxis. The causality of the system has been proved. The su-
main and the boundary wave pulse yields only one pistid  perluminality is the result of the pulse reshaping caused by
line). The circles indicate the input intensity profile scaled andthe Gouy phase shift.
shifted to the maximum. The inset shows 1 fs wide time interval of Although we have considered an aberration-free lens here,
the maximum. The intensity reaches its maximunt.a@) in case  the effect occurs in case of oth@berration-freg focusing
of k=0 (strong truncatiop while betweenz/c andt. in case of  gystems. The Gouy shift is caused by the truncation of the
x=1(b). converging spherical wave fronts by the aperture. We have

scaled and shifted to the maximum. The inset shows 1 fisfezd tshcalar allpprtOX'Tat'O?’_ bUtdlt IS I;nownd)\lfgg anda i
wide time interval of the maximum. Using the expansion of » (N€ scalar treatmeént IS adequate and IS In agreemen

([fs] b

-60 -50 -40

cosk)=1—x%2+--- one can obtain an approximation of With the experimental results.

Eq. (36) for small values oz

Eqa?

2
soitiz| L8 (- P+ loos(t—to)]

l(z,t)~

E0a2w0
2c(f+2)

(40)

2
s(t—tc)} ,
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